
www.elsevier.com/locate/eswa

Expert Systems with Applications 33 (2007) 75–85

Expert Systems
with Applications
Combining competitive scheme with slack neurons to solve
real-time job scheduling problem

Ruey-Maw Chen a, Shih-Tang Lo b, Yueh-Min Huang b,*

a Department of Computer Science and Information Engineering, National Chin-yi Institute of Technology, Taichung 411, Taiwan, ROC
b Department of Engineering Science, National Cheng-Kung University, Tainan 701, Taiwan, ROC
Abstract

Generally, how to satisfy the deadline constraint is the major issue in solving real-time scheduling. Recently, neural network using
competitive learning rule provides a highly effective method and deriving a sound solution for scheduling problem with less network com-
plexity. However, due to the availability of resources, the machines may not reach full utilization. To facilitate the problem the extra
neuron is introduced to the competitive neural network (CHNN). This study tries to impose slack neuron on CHNN with respect to
process time and deadline constraints. Simulation results reveal that the competitive neural network imposed on the proposed energy
function with slack neurons integrated ensures an appropriate approach of solving this class of scheduling problems of single or multiple
identical machines.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Slack neuron; Competitive learning; Hopfield neural network
1. Introduction

Neural networks have been widely used in a large area
of applications like image processing, learning processes,
identification and control, etc. But, there is a lack for their
use for approximate solving real-time scheduling problems.
Most problems are confirmed to be NP complete or combi-
natorial problems, especially for large-scale scheduling
problem. The traveling salesman problem (TSP) is a typical
NP-complete problem which seeks a tour that has a mini-
mum cost obtaining the optimal solution is quite time
consuming.

In general, job scheduling problems are seen as involv-
ing allocations of resources (like machines or processors)
to execute a set of jobs satisfying a given type of constraints
and optimizing a given criterion. Jobs are assigned timing
constraints like ready time and deadline, and they need a
maximum number of time units of processing time
0957-4174/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2006.04.017

* Corresponding author.
E-mail address: huang@mail.ncku.edu.tw (Y.-M. Huang).
(Cardeira & Mammeri, 1996). Many different schemes have
been developed for solving the scheduling problem. Liu
and Layland (1973) was the pioneering paper giving an
insight to real-time scheduling algorithms for mono-job
or scheduling of independent and periodic tasks. Linear
programming is widely approached to minimize cost func-
tion from the specific scheduling problem. Willems and
Rooda (1994) translated the job-shop scheduling problem
onto a linear programming format, and then mapped it
into an appropriate neural network structure to obtain a
solution. Furthermore, Foo and Takefuji (1998) adopted
integer linear programming neural networks to solve the
scheduling problem by minimizing the total starting times
of all jobs by a precedence constraint. Zhang, Yan, and
Chang (1991) developed a neural network algorithm
derived from linear programming, in which preemptive
jobs are scheduled according to their priorities and dead-
line. Silva, Cardeira, and Mammeri (1997) explored the
multi-process or real-time scheduling with a Hopfield-type
neural network. Above investigations concentrating on the
preemptive jobs executed on multiple machines with job

mailto:huang@mail.ncku.edu.tw

Nomenclature

N total number of jobs/processes to be scheduled
M total number of machines/processors to be oper-

ated
T deadline of the jobs
i, j, k denotes the ‘‘job’’, ‘‘machine’’, and ‘‘time’’ vari-

ables, respectively
x, y, z denotes the ‘‘job’’, ‘‘machine’’, and ‘‘time’’ vari-

ables, respectively
Vijk, Vxyz represents the binary states of neurons (i, j,k)

and (x,y,z) on Hopfield neural network
Pi denotes the total execution time required by

process i

di deadline of the process i

Gijk defined to examine that whether the time of pro-
cess x finished in processor i later than the time
limit

H(Gijk) unit step function. Defined to check if the timing
constraint satisfied. A non-zero value indicates
the assigned schedule violating the timing con-
straint. On the other hand, a zero value is yield
as meet the timing requirement

Wxyzijk synaptic weight between neuron (x,y,z) and
neuron (i, j,k)

hijk input bias from outside of neuron (i, j,k)
Netijk net value of neuron (i, j,k), a neuron (i, j,k) re-

ceives a community of neuron with interconnec-
tion strength Wxyzijk and an input bias, hijk, from
outside

d(a,b) Kronecker delta function. The value is 1 if a

equals b. Otherwise, the value is zero
E energy function
C1, C2, C3, C4, C5 weighting factors of energy terms

76 R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85
transfer by a neural network. Moreover, Hanada and
Ohnishi (1993) presented a parallel algorithm based on a
neural network for task scheduling problems by permitting
task transfer among machines. A classical local search heu-
ristic algorithm was embedded into the TSP optimization
neural network by Park et al. (1994). Most investigations
have constructed the energy functions for scheduling prob-
lems in terms of timing constraint, preemption, and migra-
tion features associated with the process. Meanwhile, the
neural networks were applied to solve scheduling problems
extensively.

This work aims to find a feasible solution to generic
scheduling problem. Most scheduling problem are concen-
trated on minimizing the maximum complete time (make-

span), or minimizing the tardiness. Such problem to
obtaining the optimal solution is quite time consuming.
An advantage of real-time task scheduling is owing to its
ability to meet task timing constraints rather than optimize
a given target. Examples of real-time scheduling include
nuclear power plant control system, traffic control systems,
flight mission control system and embedded tactical sys-
tems for military applications. In these applications, failure
to meet timing constraints of system might not only lead to
system degradation, but even it may lead to a hazardous
situation. To solve generic scheduling problems containing
timing constraints similar to the above examples is the
major consideration in this study. This work investigates
a job scheduling problem involving preemptive multitask-
ing with processing time and deadline constraints on the
condition of no job migration allowed. A modified neural
network with slack neuron is constructed to solve the
scheduling problems.

Hopfield and Tank (1985) started the applications in
using the neural network to solve optimization problems.
In the Hopfield neural networks, the state input informa-
tion from a community of neurons is received to decide
neuron output state information. Each neuron exchanges
information with other neurons in the network. These neu-
rons apply this information to cooperatively move the net-
work to achieve convergence. The energy function used in
the Hopfield neural network is an appropriate Lyapunov
function. Many researchers have recently applied this
method to various applications. Dixon, Cole, and Bellgard
(1995) applied the Hopfield neural network with mean field
annealing to solve the shortest path problem in a commu-
nication network. In our previous work also, we solved a
multi-constraint schedule problem for a multiprocessor or
system by the Hopfield neural network (Huang & Chen,
1999).

A competitive Hopfield neural network (CHNN) applies
a competitive learning mechanism to update the neuron
states in the Hopfield neural network. A competitive learn-
ing rule cannot only reduce the time consumed in obtaining
coefficients but also obtain an effective and sound solution.
CHNN has been applied in various fields, mostly on image
processing such as image clustering processes and specific
image segmentation. Chung, Tsai, Chen, and Sun (1994)
presented a competitive Hopfield neural network for poly-
gonal approximation. Uchiyama and Arbib (1994) used
competitive learning in color image segmentation applica-
tion. The winner-take-all rule employed by the competitive
learning mechanism ensures that only one job is executed
on a dedicated machine at a certain time, enforcing the 1-
out-of-N constraint to be held. The maximum output value
neuron of the set of neurons is activated. The monotonic of
the maximum neuron follows the fact that it is equivalent
to a McCulloch and Pitts neuron with a dynamic threshold
(Lee, Funabiki, & Takefuji, 1992). A series of studies have
been done to fully utilized processors scheduling problem
(Chen & Huang, 1998; Huang & Chen, 1999). Hopfield
neural network scheme and mean field annealing technique
are utilized to obtain an adequate schedule. The

Fig. 1. 3-D Hopfield neural network.

R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85 77
convergence rates corresponding to the cooling procedure
of the mean field annealing technique in obtaining the
scheduling results for the problem in Huang and Chen
(1999) was also studied (Chen & Huang, 1998). In Chen
and Huang (1998), we proposed a modified cooling sche-
dule to accelerate convergence rate for the investigated
problem. A typical CHNN scheme was applied to the same
problem in Chen and Huang (2001). Intrinsically, including
competitive architecture into the network solves the prob-
lems, which have a unique activated neuron on each
column or row of the networks. Accordingly, competitive
scheme can cope with fully utilized scheduling problems.
Cardeira and Mammeri investigated the multi-process
or real-time scheduling to meet deadline requirements
by applying the k-out-of-N rule, which extends slack
neurons to a neural network to agree with the inequality
constraints. They extended the methodology to handle
real-time scheduling with precedence constraints (Cardeira
& Mammeri, 1994, 1997). Tagliarini, Christ, and Page
(1991) demonstrated a weapon-to-target approach for a
resource allocation task problem. A slack neuron is associ-
ated with each weapon. The slack neuron activated repre-
sents the hypotheses that the associated weapon is not
fired. In real-time scheduling problem, due to the capacity
constraints or availability of resources, the machines may
not reach full utilization. A fully utilization system involves
a special situation of job scheduling. This investigation
extended the neural networks by adding some extra neu-
rons to ease this restriction. The deterministic rules of the
CHNN were applied to update the states of slack neuron.
However, this work determined neuron states by the com-
petitive rule to handle inequality constraint problem. The
competitive mechanism is considered as an extreme situa-
tion of k-out-of-N. Hence, competitive mechanism is able
to solve non-fully utilized scheduling cases.

In light of above developments, this work explores the
job scheduling problem on a non-fully utilized (incomplete
usage) system including timing constraints. The scheduling
problem is presented using three-dimensional neural net-
work structure. Extra slack neurons are added on to the
networks to meet utilized conditions. This work can extend
to cases of fully utilized situations. An energy function is
proposed to illustrate the timing constraints. In CHNN,
the scheduling problem is aimed at minimizing the energy
function. The energy change is invariably negative when
using formal mathematical derivations. The competition
process of the Hopfield neural network can be applied to
obtain the solution. Simulations on fully and non-fully uti-
lized case scheduling problems were investigated in this
study. The simulation results show that the proposed
method can solve the real-time scheduling problem.

The rest of this paper is organized as follows. Section 2
derives the corresponding energy function of scheduling
problem according to the intrinsic constraints. Section 3
reviews the competitive algorithm with slack neuron and
translates the derived energy functions to the proposed
algorithm. The simulation examples and experimental
results are presented in Section 4. The conclusion and
future work is showed in Section 5. In addition, the energy
convergence proof is provided in Appendix A.

2. Energy function of the scheduling problem

Scheduling problems markedly differ from case to case.
The scheduling problem domain to be considered in this
paper is defined as follows. Assume that there are N jobs
and M machines. First, a job can be segmented, and the exe-
cution of each segment is preemptive. Second, the different
segments of a job cannot be assigned to different machines,
implying that no job migration is allowed between
machines. Third, each job’s execution time and deadline
are predetermined. Moreover, the machine is allowed to
be non-fully utilized. A set of jobs can be obtained accord-
ing these assumptions.

The optimization applications of neural networks are
considered to solve this problem. At the first stage, the
energy function representing the scheduling problem have
to be defined, and the energy function is transformed into
a 3-D HNN (Fig. 1). Second, CHNN is trained based on
the predefined problem. Finally, the optimization process
is searching for neuron states satisfying all constraints to
minimize or maximize the energy function. This scheduling
problem involves three variables, job, machine, and time.
These three variables Vijk are displayed in Fig. 1. The
‘‘x’’ axis denotes the ‘‘job’’ variable, with i representing a
specific job with a range from 1 to N + 1, where N is the
total number of jobs to be scheduled. The (N + 1)th job
is a pseudo-job, i.e., a supplementary job to fulfill 1-out-
of-N rule. That is, inequality constraints can be enforced
by adding neurons to the hypothesis representation neu-
rons. The additional neurons are analogous to slack vari-
ables that are sometimes adopted to solve optimization
problems in operation research, and are therefore called
‘‘slack neurons’’. Herein, slack neurons are neurons in
representing the pseudo-job. If one machine processes a
pseudo-job, it means machine is doing nothing at this time.
The ‘‘y’’ axis stands for the ‘‘machine’’ variable, and the
term j on the axis represents a dedicated machine from 1
to M, where M denotes the total number of machines to
be operated. Finally, the ‘‘z’’ axis denotes the ‘‘time’’ vari-
able, with k representing a specific time which should be
less than or equal to T, where T is the job deadline. Thus,
a state variable Vijk is defined as representing whether or

78 R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85
not job i is executed on machine j at a certain time k. The
activated neuron Vijk = 1 denotes that the job i is run on
machine j at time k; otherwise, Vijk = 0. The activated neu-
ron V(N+1)jk = 1 indicates that machine j at a certain time k

is free. Notably, each Vijk corresponds to a neuron
of the neural network; the total neurons of CHHH is
(N + 1) * M * T, which is combined with slack neuron.

Five energy terms of energy function are summarized
representing the scheduling problem. The first energy term
denotes the output state constraints, since machine j can
only run one job at a certain time k. If job i is processed
on machine j at time k (Vijk = 1), there is no other job i1
that can be processed on machine j at time k. This energy
term is defined as

XNþ1

i¼1

XM

j¼1

XT

k¼1

XNþ1

i1¼1
i16¼i

V ijkV i1jk; ð1Þ

where N, M, T, i, j, k, i1, and Vijk are as defined above, the
rest of this study employs the same notations. The term has
a minimum value of zero when it meets this constraint,
which arises when Vijk = 0 or Vi1jk = 0. The second term
confines job migration, indicating that job i runs on ma-
chine j or j1. If a job is assigned on a dedicated machine,
then all of its segments must be executed on the same
machine. However, the (N + 1)th job is a pseudo-job which
can be processed on different machines, which is not
included in this term. Accordingly, the energy term is
defined as follows:

XN

i¼1

XM

j¼1

XT

k¼1

XM

j1¼1
j16¼j

XT

k1¼1

V ijkV ij1k1: ð2Þ

This term also has a minimum value of zero when Vijk or
Vij1k1 is zero. The third energy term is defined as

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijk � P i

 !2

; ð3Þ

where Pi is the total execution time needed by job i. This
energy term means that the time consumed by job i must
equal Pi such that

PP
V ijk ¼ P i. Eq. (3) becomes zero.

The processing time of the pseudo-job (the N + 1th job)
is defined as the total available time for all machines
subtracts the total processing time required by all N

jobs. Additionally, another state constraint energy item is
introduced as

XM

j¼1

XT

k¼1

XNþ1

i¼1

V ijk � 1

 !2

: ð4Þ

This energy term provides a supplemental constraint to
ensure that no job being executed on a specific machine
at a certain time when using the 1-out-of-N rule. Therefore,
this energy item should also reach a minimum value of
zero. The following energy term is defined to meet the
deadline requirement of each job i

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijkG2
ijkHðGijkÞ;

HðGijkÞ ¼
1; if Gijk > 0;

0; if Gijk 6 0;

(
Gijk ¼ k � di;

ð5Þ

where di denotes the deadline of job i and H(Gijk) is the unit
step function. Similarly, the maximum time limit is set to
the deadline of the pseudo-job. The energy term will exceed
zero when a job is allocated, the run time is greater than d,
i.e., when Vijk = 1, k � di > 0, and H(Gijk) > 0. The energy
value grows exponentially with the associated time lag
between di and k, given by k � di. Conversely, this energy
term has a value of zero if Vijk = 1 and k � di 6 0. Accord-
ingly, the final energy function with all constraints can be
induced as shown in Eq. (6)

E ¼ C1

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

XNþ1

i1¼1;
i16¼i

V ijkV i1jk

þ C2

2

XN

i¼1

XM

j¼1

XT

k¼1

XM

j1¼1;
j16¼j

XT

k1¼1

V ijkV ij1k1

þ C3

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijk � P i

 !2

þ C4

2

XM

j¼1

XT

k¼1

XNþ1

i¼1

V ijk � 1

 !2

þ C5

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijkG2
ijkHðGijkÞ; ð6Þ

C1, C2, C3, C4, and C5 represent weighting factors which
like N, M and T, are assumed to be positive constants.
Based on the discussion made above, the derived energy
function has a minimum value of zero when all constraints
are met with the defined problem.

Eq. (6) can be proved to be an appropriate Lyapunov
function for the system. The proof of convergence can refer
to Appendix A.

3. Competitive algorithm

In this section, the scheduling problem and the defined
energy function are mapped onto the competitive HNN
to yield solutions as described.

Hopfield and Tank originally proposed the neural net-
work method to solve the optimization problems in
Hopfield and Tank (1986). The HNN algorithm is based
on the gradient technique to get the problems solution and
thus provides rapid convergence. Moreover, the HNN also

Fig. 2. Neuron states example for 4 jobs with pseudo-job activated.

R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85 79
provides potential for parallel implementation. In Hopfield
(1982) and Hopfield and Tank (1986), a circuit composed
of simple analog amplifiers that implements this type of
neural networks was proposed. Based on dynamic system
theory, the Lyapunov function (Cohen & Grossberg,
1983; Hopfield & Tank, 1986) shown in Eq. (7) has verified
the existence of stable states of the network system. The
energy function representing the scheduling problem must
be in the same format as the Lyapunov function and
expended to a three-dimensional model as below

E ¼ � 1

2

X
x

X
y

X
z

X
i

X
j

X
k

V xyzW xyzijkV ijk

þ
X

i

X
j

X
k

hijkV ijk; ð7Þ

Vxyz and Vijk denote the neuron states, Wxyzijk represents
the synaptic weight and the interconnection strength
among neurons, and hijk denotes the threshold value repre-
senting the bias input of the neuron. Additionally, the con-
ventional HNN using the deterministic rule is displayed in
Eq. (8) below to update the neuron state change. This rule
is

V nþ1
ijk ¼

1; if Netijk > 0;

V n
ijk; if Netijk ¼ 0;

0; if Netijk < 0:

8><
>: ð8Þ

Meanwhile, Netijk represents the net value of the neuron
(i, j,k) obtained using the interconnection strength Wxyzijk,
with the other neurons (x,y,z), and the bias input hijk which
is shown as follows:

Netijk ¼ �
oE

oV ijk
¼
X

x

X
y

X
z

W xyzijkV xyz � hijk: ð9Þ

Instead of applying conventional deterministic rules to
update the neuron states, this study used competition rule
to decide the winning neuron among the set of neurons,
i.e., the active neuron. As discussed previously, a Hopfield
neural network applying a winner-take-all learning mecha-
nism is called a competitive Hopfield neural network,
CHNN. The competitive rule is adopted to construct neu-
ral networks that satisfy constraints in which ‘‘exactly one
neuron among N’’ should be activated when the network
reaches a stable state, and can be regarded as a 1-out-of-
N confine rule. Hence, the number of activated neurons
during each time unit has to be exactly the number of
machines when the neural network reaches a stable state.

Since a machine can only execute one job at a certain
time in a subject scheduling problems, omitting the first
C1 and the fourth C4 energy terms from the HNN energy
function Eq. (6) generates a simplified energy function that
satisfies the competitive constraint. Restated, the first C1

and the fourth C4 energy terms are handled implicitly in
1-out-of-N competitive rule. The resulting energy function
after simplification is given as follows:
E ¼ C2

2

XN

i¼1

XM

j¼1

XT

k¼1

XM

j1¼1;
j16¼j

XT

k1¼1

V ijkV ij1k1

þ C3

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijk � P i

 !2

þ C5

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijkG2
ijkHðGijkÞ: ð10Þ

The resulted energy function makes it apparent that this
must be an appropriate Lyapunov function. The synaptic
interconnection strength Wxyzijk and the bias input hijk

can be obtained by comparing Eq. (10) with Eq. (7) where

W xyzijk ¼ �C2 � dðx; iÞ � ð1� dðy; jÞÞ � C3 � dðx; iÞ ð11Þ

and

hxyz ¼ �C3P i þ
C5

2
� G2 � HðGÞ; ð12Þ

respectively, where

dða; bÞ ¼
1 if a ¼ b;

0 if a 6¼ b;

�
is the Kronecker delta function:

The CHNN imposed a competitive winner-take-all rule
to update the neuron states. Neurons on the same column

of a dedicated machine at a given time compete with one
another to determine the winning neuron. The neuron that
receives the highest net value is the winning neuron.
Accordingly, the output of the winner neuron is set to 1,
and the output states of all the other neurons on the same
column are set to 0. For example, there are four jobs to be
processed in two machines as displayed in Fig. 2. If jobs 2
and 3 are assigned to machine 1, then the neuron activated
(Vijk = 1) is shown by a solid node. Therefore, the final net-
work state has exactly one neuron at a time for each
machine. The winner-take-all update rule of the neuron
for the ith column is illustrated as follows:

V xjk ¼
1 if Netxjk ¼ Max

i¼1�Nþ1
Netijk;

0 otherwise;

(
ð13Þ

Fig. 3. Job assignment for case 1.

Table 5
Timing matrix of 10 Jobs on 3 processors (case 4, A = 2; case 5, A = 5)

Time required Time limit

Job 1 A 10
Job 2 3 5
Job 3 3 9
Job 4 2 5
Job 5 3 9
Job 6 2 6
Job 7 3 10
Job 8 2 5
Job 9 3 9
Job 10 4 10

80 R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85
where Netxjk denotes the maximum total neuron input
which is equivalent to the dynamic threshold on a
McCulloch and Pitts neuron (Lee et al., 1992).

4. Experimental simulations

The simulations consider classes of scheduling problems
with timing constraints. Several different timing constraints
and various weighting factors were applied to the simula-
tions. Table 1 shows the weighting factors constants of
the energy function in Eq. (10) in simulation. Tables 2–5
show the different timing constraints of simulation cases,
respectively. The simulation involves scheduling four or
five jobs in two machine systems. In addition, a more com-
plicated simulation case with 10 jobs in three machine sys-
tems is included as well. The simulation results were
displayed by using a Gantt chart to graphically represent
the job schedules. Cases 1 and 3 are the same simulation
examples as in Chen and Huang (2001). These cases were
included to facilitate the full machine utilization system
scheduling study. Figs. 3 and 4 illustrate the resulting
schedules of case 1 for the proposed algorithm and the
scheme in Chen and Huang (2001), respectively. Moreover,
different initial neuron states were simulated to understand
Table 2
Timing matrix of 4 jobs on 2 machines (case 1)

Time required Time limit

Job 1 4 6
Job 2 3 4
Job 3 3 6
Job 4 2 3

Table 3
Timing matrix of 4 jobs on 2 machines (case 2)

Time required Time limit

Job 1 5 8
Job 2 4 8
Job 3 3 6
Job 4 2 3

Table 4
Timing matrix of 5 jobs on 2 machines (case 3)

Time required Time limit

Job 1 2 3
Job 2 5 8
Job 3 3 4
Job 4 4 8
Job 5 2 5

Fig. 4. Job assignment for case 1 using scheme in Chen and Huang (2001).

Table 1
Weighing factors

Constants for CHNN

C2 C3 C5

1.35 0.55 1.3
better the response of the neural network to the scheduling
problem. Figs. 5 and 6 display two of the resulting sched-
ules correlating with different initial neuron states for case
2. This simulation example is the case for those machines
which were under full usage. Meanwhile, Figs. 7 and 8
illustrate the resulting schedule of case 3 for different initial
Fig. 5. Job assignment for case 2.

Fig. 6. Job assignment for case 2 with different initial states.

Fig. 11. Job assignment for case 5.

35

R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85 81
conditions with full machine usage. Figs. 8 and 9 display
the full usage schedules of case 3 for this work and the
method proposed in Chen and Huang (2001). Finally, Figs.
10 and 11 represent the resulting schedules correlating with
the cases 4 and 5, respectively. Case 4 is the example of a
machine which is not in full usage, while case 5 is the exam-
ple of a machine which is in full usage. The job assignment
of S as displayed in Figs. 5, 6, and 10 indicates the active
slack neurons. That is, the machine does nothing at that
time. To minimize the completion time of a machine, the
jobs behind the slack neurons can be shifted forward if
there are no other constraints. Additionally, Figs. 12 and
13 show the significant parts of the energy curves during
neural network evolution. Fig. 14 demonstrates that the
initial states are all set to all 0 or 1 for cases 2 and 4.
Fig. 7. Job assignment for case 3.

Fig. 8. Job assignment for case 3 with different initial states.

Fig. 9. Jobs assignment for case 3 using scheme in Chen and Huang
(2001).

Fig. 10. Job assignment for case 4.

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

25

30

case 1

case 2

case 3 case 4

case 5

of iterations

E
ne

rg
y

Fig. 12. Energy evolution of cases 1–5.

Fig. 13. Energy evolution of case 1 and 3 using different schemes.
Different initial states of neurons will generate a feasible
solution. Notably, to guarantee convergence to a mini-
mum, the neuron state update was performed sequentially
with complete neuron update each time in the simulation
(Hopfield, 1984; Takeda & Goodman, 1986).

Fig. 14. Energy evolution of case 2 and 4 with initial states set to 0 and 1.

82 R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85
This study proposed an approach for solving timing
constraint problems with full or not full machine usage
problems or with different initial states of neurons. From
these simulations, each job has a process time and deadline
which were given in advance. The proposed method can
solve the real-time job scheduling problem by addressing
the problem constraint.

5. Conclusions

Hopfield used the quadratic energy function which
resulted in the quadratic cost of the interconnection net-
work and hence a poor scaling property. The competitive
mechanism eliminated the constraint terms in the energy
function, simplifying the network by reducing the intercon-
nections among neurons (Chung et al., 1994), and this is
shown in Eq. (10). Hence, the competitive scheme can help
overcome the scaling problem.

This investigation illustrated an approach to map the
problem constraint into the energy function of the compet-
itive neural network containing slack neurons which were
involved so as to resolve the timing constraints schedule
problem for both non-fully utilized and fully-utilized sys-
tems. The simulation results demonstrated some significant
consequences for this study, specifically the features of this
work, when applied to the scheduling domain examined.
These were as follows:

(1) The extra slack neurons which were added facilitated
solving the studied problems with inequality con-
straints. The proposed method is workable and feasi-
ble in real-time job scheduling problems, even in fully
or non-fully utilized scheduling problems.

(2) Convergence is initially state dependent, as displayed
in Fig. 14. In many researches, they experienced
unstable revolutions and produced no solutions. Dis-
tributing the initial states randomly can generally
produce feasible schedules for the investigated sched-
uling problem.

(3) The entailed synaptic weight matrix in Eq. (11) has a
symmetric (i.e., Wxyzijk = Wijkxyz) property, but
nevertheless has a self-feedback interconnection,
indicating that Wxyzijk 5 0. Therefore, the network
may oscillate when it is updated (Hopfield & Tank,
1986; Takeda & Goodman, 1986). Consequently, a
solution is not guaranteed, causing an inevitable
oscillation procedure. In Takefuji and Lee (1991),
Takefuji and Lee proposed a hysteresis binary neuron
model to effectively suppress the oscillatory behaviors
of neural dynamics for solving combinatorial optimi-
zation problems.

Moreover, weighting factor determination is a laborious
work. This study did not employ a unique set of weighting
matrices in our simulation, as listed in Table 1. Various sets
of weighting factors were investigated. C2, C3, and C5 can
be set to 1.27–1.44, 0.51–0.56, and >0.54 in these simula-
tions, respectively. C2 and C3 were tightly coupled since
they dominate the synaptic of the network. Different sets
of weighting factors may produce different neural network
revolutions. However, the reduction of energy terms in this
work also assisted in easing this annoying affair.

The HNN is frequently caught in a local minimum. The
simulated annealing technique can effectively obtain a glo-
bal minimum capable of escaping the local minimum.
However, this approach requires a higher time complexity
and is not solvable by analog circuits (Tank & Hopfield,
1986). An important feature of a scheduling algorithm is
its efficiency or performance, i.e., how its execution time
grows with the problem size. The parameter most relevant
to the time that a neural network takes to find a solution is
the number of iterations needed to converge to a solution.
According to the simulation results, the proposed algo-
rithm required an average of 5–20 epochs to converge.
An epoch involves updating every column of the competi-
tive Hopfield neural network. Consequently, this algorithm
resulted in a O((N + 1)2

* M2
* T) complexity. Restated,

the execution time was proportional to O(N2
* M2

* T)
for each epoch. Furthermore, finding the solution for a
very large-scale system (very large N and/or very large
M) is a drawback of the proposed model. Future works
should examine how to reduce the complexities of solving
the scheduling problems.

The energy function proposed herein works efficiently
and can be applied to similar cases of investigated schedul-
ing problems. Among which, the jobs are independent
without requiring communication or utilizing memory
resources to exchange data. However, the required network
implementation depends on the intended applications. The
competitive scheme combined with slack neurons suggests
that the way to apply this kind of scheduling has inequality
constraints.

This work concentrated mainly on solving job scheduling
without ready time consideration or resource constraints.

R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85 83
For more practical implementations, different and more
complicated scheduling problems can be further investi-
gated in future researches by applying the proposed
algorithm. Such problems include preemptive multi-job
scheduling on multi-machine systems with multi-
constraints such as deadline and resource constraints, or
jobs with precedence relationship and synchronized consid-
eration. The problem can be further extended to involve the
temporal relationship of ready time or priority for each job.
Correspondingly, the energy function in our work can be
modified by using additional energy terms to satisfy extra
requirements. Future research endeavors should address
these issues more thoroughly.

Appendix A. Convergence of the energy function

This appendix proves the convergence of the derived
energy function mathematically for the investigated prob-
lem. The simplified energy function (Eq. (10)) is re-listed
below

E ¼ C2

2

XN

i¼1

XM

j¼1

XT

k¼1

XM

j1¼1;
j16¼j

XT

k1¼1

V ijkV ij1k1

þ C3

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijk � P i

 !2

þ C5

2

XNþ1

i¼1

XM

j¼1

XT

k¼1

V ijkG2
ijkHðGijkÞ: ðA:1Þ

For clearness, the energy function can be represented as
follows (Eq. (A.2)):

E¼C2

2

XN

i¼1

XM

j1¼1;
j16¼m

XT

k1¼1

V imnV ij1k1þ
XN

i¼1

XM

j¼1;
j6¼m

XT

k¼1;
k 6¼n

XM

j1¼1;j1 6¼j;
j1 6¼m

XT

k1¼1

V ijkV ij1k1

0
BB@

1
CCA

þC3

2

XNþ1

i¼1

V imnþ
XM

j¼1;
j6¼m

XT

k¼1;
k 6¼n

V ijk�P i

0
BB@

1
CCA

0
BB@

1
CCA

20
BB@

1
CCA

þC5

2

XNþ1

i¼1

V imnG2
imnHðGimnÞþ

XNþ1

i¼1

XM

j¼1;
j6¼m

XT

k¼1;
k 6¼n

V ijkG2
ijkHðGijkÞ

0
BB@

1
CCA:
ðA:2Þ

Expanding the C3 terms as follows:

E¼C2

2

XN

i¼1

XM

j1¼1;
j16¼m

XT

k1¼1

V imnV ij1k1þ
XN

i¼1

XM

j¼1;
j6¼m

XT

k¼1;
k 6¼n

XM

j1¼1;j1 6¼j;
j1 6¼m

XT

k1¼1

V ijkV ij1k1

0
BB@

1
CCA

þC3

2

XNþ1

i¼1

ðV imnÞ2þ2V imn

XM

j¼1;
j6¼m

XT

k¼1;
k 6¼n

V ijk�P i

0
BB@

1
CCA

0
BB@

0
BB@
þ
XM

j¼1;
j 6¼m

XT

k¼1;
k 6¼n

V ijk�P i

0
BB@

1
CCA

21
CCA
1
CCA

þC5

2

XNþ1

i¼1

V imnG2
imnHðGimnÞþ

XNþ1

i¼1

XM

j¼1;
j6¼m

XT

k¼1;
k 6¼n

V ijkG2
ijkHðGijkÞ

0
BB@

1
CCA:
ðA:aÞ

The energy function can be written as following two parts:

E ¼ Emn þ Eother:

The first one is for the processor m at given time n, that is,
Emn. The second part is the remainder, that is, Eother. Re-
stated, Emn is the summation of the energy term corre-
sponding to neuron state Vimn. These Vimn terms related
to the neuron represents a process i being executed at a spe-
cific processor m at a certain time n. Restated, Vimn is the
neuron on the ith row (job) and the nth column (time)
for the specific processor m. Focusing on these terms at
the (t)th iteration, the Vlmn is supposed to be the only active
neuron (l,m,n) in the nth column on the processor m before
updating, that is,

V ðtÞlmn ¼ 1; and

V ðtÞ¼0
imn ; for i 6¼ l:

(

Moreover, the neuron (q,m,n) at (t + 1)th iteration is sup-
posed to be the only neuron activated with the largest total
input value after updating, that is,

V ðtþ1Þ
qmn ¼ 1; and

V ðtþ1Þ¼0
imn ; for i 6¼ q:

(

According to Eq. (9), the total input of the neuron (i, j,k)
is obtained, i.e., net value, which is as follows (Eq. (A.3)):

Netijk ¼ �
oE

oV ijk

¼ �C2

2

XM

j1¼1;
j16¼j

XT

k1¼1

V ij1k1 � C3ðV ijk � P iÞ

� C5

2
G2

ijkHðGijkÞ: ðA:3Þ

The active neuron, based on the winner-take-all update
rule as in Eq. (A.3), is the one with the maximum net value
on each column in each update, that is

Netðtþ1Þ
qmn ¼ Max

i¼1�Nþ1
Netðtþ1Þ

imn :

This equation implies that

Netðtþ1Þ
qmn > Netðtþ1Þ

lmn ; ðA:4Þ

where Netqmn and Netlmn are obtained based on Eq. (A.3)
as follows:

84 R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85
Netqmn ¼ �
C2

2

XM

j1¼1;
j16¼m

XT

k1¼1

V qj1k1 � C3ðV qmn � P qÞ

� C5

2
G2

qmnHðGqmnÞ ðA:5Þ

and

Netlmn ¼ �
C2

2

XM

j1¼1;
j16¼m

XT

k1¼1

V lj1k1 � C3ðV lmn � P lÞ

� C5

2
G2

lmnHðGlmnÞ: ðA:6Þ

Investigating Eq. (A.2), the total energy difference of the neu-
ral network, DE, between the (t + 1)th iteration and the (t)th
iteration is the same as the Emn change between the (t + 1)th
iteration and the (t)th iteration. Restated, the Eother is
canceled out, DE is displayed as follows:

DE ¼ Eðtþ1Þ
mn � EðtÞmn

¼ C2

2

XM

j1¼1;
j16¼m

XT

k1¼1

V ðtþ1Þ
qmn V qj1k1 �

XM

j1¼1;
j16¼m

XT

k1¼1

V ðtÞlmnV lj1k1

0
BB@

þ
XN

i¼1;
i6¼q

XM

j1¼1;
j1 6¼m

XT

k1¼1

V ðtþ1Þ
imn V ij1k1 �

XN

i¼1;
i 6¼l

XM

j1¼1;
j16¼m

XT

k1¼1

V ðtÞimnV ij1k1

1
CCA

þ C3

2
ððV ðtþ1Þ

qmn Þ
2 � 2V ðtþ1Þ

qmn P qÞ � ððV ðtÞlmnÞ
2 � 2V ðtÞlmnP lÞ

0
BB@

þ 2
XNþ1

i¼1

V ðtþ1Þ
imn

XM

j¼1;
j 6¼m

XT

k¼1;
k 6¼n

V ijk � 2
XNþ1

i¼1

V ðtÞimn

XM

j¼1;
j 6¼m

XT

k¼1;
k 6¼n

V ijk

1
CCA

þ C5

2
V ðtþ1Þ

qmn G2
qmnHðGqmnÞ � V ðtÞlmnG2

lmnHðGlmnÞ

0
BB@

þ
XNþ1

i¼1;
i 6¼q

V ðtþ1Þ
imn G2

imnHðGimnÞ �
XNþ1

i¼1;
i6¼l

V ðtÞimnG2
imnHðGimnÞ

1
CCA

þ
XNþ1

i¼1;
i6¼q

V ðtþ1Þ
imn G2

imnHðGimnÞ �
XNþ1

i¼1;
i6¼l

V ðtÞimnG2
imnHðGimnÞ:

ðA:7Þ

Since V ðtþ1Þ
qmn ¼ 1, V ðtþ1Þ

imn ¼ 0 ði 6¼ qÞ, V ðtÞlmn ¼ 1, and V ðtÞimn ¼
0 ði 6¼ lÞ. Thereby, the energy change difference demon-
strated in Eq. (A.7), is rewritten as follows:
DE ¼ C2

2

XM

j1¼1;
j16¼m

XT

k1¼1

V qj1k1 �
XM

j1¼1;
j16¼m

XT

k1¼1

V lj1k1

0
BB@

1
CCA

þ C3

2
ð1� P qÞ2 � ð1� P lÞ2 þ

XNþ1

i¼1;
i6¼q

P 2
i �

XNþ1

i¼1;
i6¼l

P 2
i

0
BB@

1
CCA

þ C5

2
ðG2

qmnHðGqmnÞ � G2
lmnHðGlmnÞÞ: ðA:8Þ

Investigating Eq. (A.8), rearrange the C3 term as follows:

C3

2
1� 2P q þ P 2

q þ
XNþ1

i¼1;
i 6¼q

P 2
i

0
BB@

1
CCA� 1

0
BB@

þ 2P l � P 2
l þ

XNþ1

i¼1;
i6¼l

P 2
i

0
BB@

1
CCA
1
CCA ¼ C3ðP l � P qÞ: ðA:9Þ

Subtracting Eq. (A.5) from Eq. (A.6) at (t + 1)th iteration
yields the following:

Netðtþ1Þ
lmn � Netðtþ1Þ

qmn ¼
C2

2

XM

j1¼1;
j16¼m

XT

k1¼1

V qj1k1 �
XM

j1¼1;
j16¼m

XT

k1

V lj1k1

0
BB@

1
CCA

þ C3ðP l � P qÞ þ C3ðV ðtþ1Þ
qmn � V ðtþ1Þ

lmn Þ

þ C5

2
ðG2

qmnHðGqmnÞ � G2
lmnHðGlmnÞÞ:

ðA:10Þ

Accordingly, the energy changes between neuron update
equals the net value change minus C3. That is

DE ¼ Netðtþ1Þ
lmn � Netðtþ1Þ

qmn � C3: ðA:11Þ

Obviously, the above equation implies that the energy dif-
ference in the update is negative, i.e., DE < 0. Restated, the
energy function is decreasing with each epoch. Hence, the
system is convergent during network evolution. Appar-
ently, this energy function is an appropriate Lyapunov
function.

References

Cardeira, C., & Mammeri, Z. (1994). Neural networks for multiprocessor
real-time scheduling. In IEEE proceedings of the sixth Euromicro

workshop on real-time systems (pp. 59–64).
Cardeira, C., & Mammeri, Z. (1996). Neural network versus max-flow

algorithms for multi-processor real-time scheduling, real-time systems.
In Proceedings of the eighth Euromicro workshop (pp. 175–180).

Cardeira, C., & Mammeri, Z. (1997). Handling precedence constraints
with neural network based real-time scheduling algorithms. In
Proceedings of ninth Euromicro workshop on real-time systems (pp.
207–214).

Chen, R. M., & Huang, Y. M. (1998). Multiconstraint task scheduling in
multiprocessor system by neural network. In Proceedings of the IEEE

R.-M. Chen et al. / Expert Systems with Applications 33 (2007) 75–85 85
tenth international conference on tools with artificial intelligence, Taipei

(pp. 288–294).
Chen, R. M., & Huang, Y. M. (2001). Competitive neural network to

solve scheduling problem. Neurocomputing, 37(1–4), 177–196.
Chung, P. C., Tsai, C. T., Chen, E. L., & Sun, Y. N. (1994). Polygonal

approximation using a competitive Hopfield neural network. Pattern

Recognition, 27, 1505–1512.
Cohen, M., & Grossberg, S. (1983). Absolute stability of goal pattern

formation and parallel memory storage by competitive neural network.
IEEE Transaction on System, Man, and Cybernetics, 13, 815–826.

Dixon, M. W., Cole, G. R., & Bellgard, M. I. (1995). Using the Hopfield
model with mean-field annealing to solve the routing problem in a
communication network. In International conference on neural net-

works (vol. 5, pp. 2652–2657).
Foo, Y. P. S., & Takefuji, T. (1998). Integer linear programming neural

networks for job-shop scheduling. In IEEE international conference on

neural networks (vol. 2, pp. 341–348).
Hanada, A., & Ohnishi, K. (1993). Near optimal jobshop scheduling using

neural network parallel computing. In Proceedings of the international

conference on industrial electronics, control, and instrumentation (vol. 1,
pp. 315–320).

Hopfield, J. J. (1982). Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the National

Academy of Science, 79, 2554–2558.
Hopfield, J. J. (1984). Neurons with graded response have collective

computational properties like those of two-state neurons. Proceedings

of the National Academy of Science, 81, 3088–3092.
Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decision in

optimization problems. Biological Cybernetics, 52, 141–152.
Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits: A

model. Science, 233, 625–633.
Huang, Y. M., & Chen, R. M. (1999). Scheduling multiprocessor job with

resource and timing constraints using neural network. IEEE Transac-

tions on System, Man and Cybernetics, Part B, 29(4), 490–502.
Lee, K. C., Funabiki, N., & Takefuji, Y. (1992). A parallel improvement
algorithm for the bipartite subgraph problem. IEEE Transactions on

Neural Networks, 3(1), 139–145.
Liu, C., & Layland, J. (1973). Scheduling algorithms for multiprogram-

ming in a hard real-time environment. Journal of the ACM, 20(l),
46–61.

Park, J. G., Park, J. M., Kim, D. S., Lee, C. H., Suh, S. W., & Han, M. S.
(1994). Dynamic neural network with heuristic. In IEEE international

conference on neural networks (vol. 7, pp. 4650–4654).
Silva, M. P., Cardeira, C., & Mammeri Z. (1997). Solving real-time

scheduling problems with Hopfield-type neural networks. In EURO-

MICRO’97 new frontiers of information technology, proceedings of the

23rd EUROMICRO conference (pp. 671–678).
Tagliarini, G. A., Christ, J. F., & Page, E. W. (1991). Optimization using

neural networks. IEEE Transaction on Computers, 40(12), 1347–1358.
Takeda, M., & Goodman, J. W. (1986). Neural networks for computation:

number representation and programming complexity. Applied Optics,

25, 3033–3046.
Takefuji, Y., & Lee, K. C. (1991). An artificial hysteresis binary neuron: a

model suppressing the oscillatory behaviors of neuron dynamics.
Biological Cybernetics, 64, 353–356.

Tank, D., & Hopfield, J. J. (1986). Simple neural optimization networks:
an A/D converter, signal decision circuit and a linear programming
circuit. IEEE Transactions on Circuits and Systems, 33(5), 533–541.

Uchiyama, T., & Arbib, M. A. (1994). Color image segmentation using
competitive learning. IEEE Transactions on Pattern Analysis Machine

Intelligence, 16(12), 1197–1206.
Willems, T. M., & Rooda, J. E. (1994). Neural networks for job-shop

scheduling. Control Engineering Practice, 2(1), 31–39.
Zhang, C. S., Yan, P. F., & Chang, T. (1991). Solving job-shop scheduling

problem with priority using neural network. In IEEE international

conference on neural networks (pp. 1361–1366).

	Combining competitive scheme with slack neurons to solve real-time job scheduling problem
	Introduction
	Energy function of the scheduling problem
	Competitive algorithm
	Experimental simulations
	Conclusions
	Convergence of the energy function
	References

